比亚迪汉ev充电功率怎么调大_比亚迪汉***20v充电

tamoadmin 0
  1. 深度:汉EV辅助驾驶、电四驱控制策略和100千瓦快充技术
  2. 比亚迪汉dmi直流充电功率低

2207KW。比亚迪汉ev在出厂制作的时候,就将最大充电功率设计成了最大支持2207KW,在购车后可以申请一款比亚迪220V7KW的家用壁挂式充电桩。比亚迪汉EV是首款***用比亚迪全新家族设计语言的车型,得益于汉EV的旗舰级定位、较大的车身尺寸,全新DragonFace造型在该车上获得了很好的视觉效果。

深度:汉EV***驾驶、电四驱控制策略和100千瓦快充技术

本文为新能源情报分析网原创发布,就比亚迪汉EV四驱版在室外最低温度-17摄氏度环境,对基于刀片电池系统的充电效率(包括驾驶舱引用的多种保温/降噪技术)、第3种技术状态电四驱系统冰雪路面控制策略进行研读和判定。

早在2015年12月,新能源情报分析网综合多方渠道获得的信息推出包括汉EV在内的多款行车技术状态的预判稿件。其中涉及到汉DM的前后驱动桥扭矩分配更均衡,汉EV的电驱动技术等技术点几乎都在5年后量产车上得到了验证。

比亚迪汉ev充电功率怎么调大_比亚迪汉ev220v充电
(图片来源网络,侵删)

在过去的10个月间,新能源情报分析网总共刊出涉及到汉EV四驱(包括两驱)版的低温环境IPB制动系统测试;“e+”电驱动技术平台、刀片电池及低导电率冷却液以及高温环境充电效率评测;在台架上对第3种技术状态电四驱系统控制策略的评测稿件7篇。

***用560伏电压平台的刀片电池(适配低导电率冷却液)以120千瓦进行直流快充,换来的更小的电流(更少的发热量和能耗),集成度更高的“e+”电驱动技术平台(200千瓦后置15500转/分“3合1”电驱动总成+SiC控制技术),第3种技术状态电四驱技术解决方案,预示着比亚迪汉EV四驱版是一款融入了刀片电池的系统安全、正向开发车型平台安全和轴间扭矩再分配的电四驱性能安全于一体的以安全性为导向的电动汽车,而不再是单纯强调续航加速的EV车型。

上图为拆除掉原车标配的前动力舱防尘罩后,***出汉EV四驱版各分系统技术状态细节特写。

红色箭头:“3合1”电驱动总成和“2合1”双向充配电总成共用的低压循环管路补液壶。

绿色箭头:伺服刀片电池热管理系统低温预热功能的PTC控制模组。

**箭头:刀片电池热管理系统循环管路补液壶(内部压力15千帕)且灌装的是低导电率的冷却液。

蓝色箭头:“2合1”双向充配电总成。

在2018年量产秦EV、e5和宋EV车型上,比亚迪应用的是12000转/分“2合1”电驱动总成与“4合1”高压电控技术解决方案,并适配了3组循环系统用于电驱动高温散热、电池的高温散热和低温预热以及驾驶舱空调制暖。

在2019年量产的秦Pro?E、宋Pro?EV、元EV以及唐EV车型上,比亚迪应用的是15000转/分“3合1”电驱动总成、“3合1”高压用电系统总成和“10合1”低压用电系统总成的“e平台”技术解决方案,简化到2组循环系统用于电驱动与高压用电系统高温散热以及电池的高温散热和低温预热。

在2020年量产的汉EV上,比亚迪应用的是2组15500转/分“3合1”电驱动系统总成并引入了SiC电控技术、“2合1”双向充配电系统总成、更耐高温和大倍率充放电的刀片电池系统的“e+”平台技术解决方案,设定2组循环系统电驱动与高压用电系统高温散热以及电池的高温散热和低温预热。

上图为汉EV刀片电池热管理系统水冷板控制模组和PTC控制模组细节特写。

红色箭头:水冷板控制模组引入来自电动压缩机带来的“冷量”与电池冷却液带来的“热量”进行热交换,达到为刀片电池内部电芯进行高温散热目的。

橘色箭头:PTC控制模组加热从刀片电池内部引出的低导电率冷却液至15摄氏度,达到为对电芯进行低温预热目的。

绿色箭头:刀片电池内部灌装的低导电率冷却液,用于在刀片电池遭受冲击内部管路破裂,杜绝短路的安全设定。

水冷板控制模组、PTC控制模组和刀片电池串联在一个循环管路,构成具备高温散热和低温预热能力的低压循环管路,而灌入的低导电率冷却液不仅原本耐高温的刀片电池提供双重安全保证。至今为止,汉EV四驱版(两驱版)是全球第二款(国内首款)***用更安全的低导电率冷却液(伺服电池)的电动汽车

汉EV四驱版(两驱版)***用的是基于比亚迪研发的“e+”平台,在技术含量与扩展潜力是优于唐EV四驱版(两驱版)***用的“e”平台。“e+”平台适配的“2合1”双向充配电系统,对“e平台”的“3合1”高压电控系统进行全面优化,将PTU和DCDC进行了整合。与560伏刀片电池的配合下,“e+”平台的充电效率有所提升同时,电流持续降低、发热部件及发热量相应的减少。从结构上看,汉EV四驱版(两驱版)***用的“e+”平台在结构上做了“减法”,在可靠性上做了“加法”。

1、汉EV四驱版在低温环境进行的2组直流快充测试:

在第1组直流快充测试中,模拟的是汉EV四驱版凉车状态直流快充效率与动力电池热管理控制系统策略。为了进一步对比,搭载刀片电池的汉EV四驱版的凉车状态充电效率,与1台NEDC续航400公里、搭载1套***用空调直接制冷散热和电加热功能三元锂电池的雷克萨斯UX电动汽车进行对比(具体信息后文介绍)。

在室外温度最低达到-14摄氏度的北京,首先将动力电池SOC值处于55%的汉EV四驱版停放到国家电网充电场站静置一晚。然后在第二天一早室外温度“回升”至-13摄氏度的7:30分进行60千瓦直流快充测试。

为了更好地体现比亚迪汉EV四驱版在冬季低温环境充电效率,将整车静置在充电场站一晚,与第二天一早通过国家电网60千瓦充电桩进行直流快充测试。充电1分钟,充电测试时室外温度约为-9摄氏度,汉EV四驱版搭载的刀片电池电芯最高温度为-1摄氏度。

充电1分钟,汉EV四驱版驾驶员液晶显示屏输出“动力电池智能温控系统工作中”信息,意味着开始引入来自充电桩端的电量为刀片电池进行低温预热伺服,充电功率为26.8HP(马力)约等于19.7千瓦,预计充满时间为2小时。

备注:在后文将对车载显示的单位统一调整为公制,用千瓦来显示充电功率。

充电1分钟,通过热成像仪监测汉EV四驱版刀片电池热管理循环管路可见,PTC控制模块开始进行升温(白色箭头所指)至约-5摄氏度;“3合1”电驱动总成和“2合1”双向充配电总成共用的低压循环管路补液壶(红色箭头所指)表面温度约为-8摄氏度;刀片电池热管理系统循环管路补液壶(绿色箭头所指)温度上升至约-4摄氏度,补液壶内的低导电率冷却液在电子水泵的作用下进行循环。

充电42分钟,汉EV四驱版刀片电池电芯温度已经提升至14摄氏度,SOC值为77%。额定电压569.6伏,就是刀片电池的电压标定值,也就是说汉EV四驱版(包括两驱版)电压平台为560伏级别,远超过当下一汽奥迪国产化的e-tron***用的400伏电压平台。

充电42分钟,充电桩显示充电电流为106.5安培,充电电压为510.1伏,充电功率换算为为54.4千瓦左右。

充电42分钟,汉EV四驱版驾驶员用液晶显示屏的充电功率为50.5千瓦,由于“动力电池智能温控系统工作中”占用了一部分充电功率,因此显示的充电功率小于桩端计算的充电功率。

此时再通过红外线热成像仪针对汉EV热管理系统进行细节观察可以发现,此时该部分最高温度达到26.9摄氏度,温度最高点为刀片电池预热的PTC模组(白色箭头),同时电驱动、双向充配电系统补液壶(红色箭头)和刀片电池热管理补液壶(绿色箭头)温度明显升高,但需要注意的是电驱动和双向充配电系统补液壶温度是吸收充电时“2合1”双向充配电模块的热量,而刀片电池热管理系统补液壶是因为低温预热PTC模组加热产生的热量。

需要说明的是,随着刀片电池内电芯温度的升温,充电功率持续提升,同时开启驾驶舱空调制暖系统换取更好的舒适性。在低温环境充电同时,开启驾驶舱空调制暖,会占用更多来自充电桩端的功率,对充电周期有所延长。

在汉EV四驱版进行凉车状态直流快充测试时,同一充电场站1台上汽新能源制造的荣威ei5电动汽车进行充电。目前在售的荣威ei5电动汽车售价11-13万元,NEDC续航里程420公里,搭载1台装载电量52.5度电、带有完整的液态热管理系统(高温散热和低温预热)的三元锂电池总成。

从充电桩端显示,这台续航400公里级的荣威ei5电动汽车充电时长约为58分、电芯最高温度2摄氏度、需求电流43.6安、额定电压355伏;在另一显示子菜单中,58分钟内充入14.32度电、充电电流为32.8安、充电电压372.5伏。

在第2组直流快充测试中,模拟的是汉EV四驱版热车状态直流快充效率与动力电池热管理控制系统策略。为了进一步对比,搭载刀片电池的汉EV四驱版的热车充电效率,与1台NEDC续航400公里、搭载1套***用空调直接制冷散热和电加热功能三元锂电池的雷克萨斯UX电动汽车进行对比(具体信息后文介绍)。

在室外温度低至-17摄氏度的承德郊区,将汉EV四驱版静置一晚,于第2天一早8点启动、开启驾驶舱空调制暖,并沿京承高速返回北京途中的国家电网充电站进行直流快充测试。

我们在京承高速公路服务区的国家电网充电场站进行热车状态直流充电测试,室外温度约为-8摄氏度。充电3分钟,汉EV四驱版自动激活“动力电池智能温控系统”,同时,充电功率直接提升至55.2千瓦。

充电3分钟,汉EV四驱版搭载的刀片电池电芯温度为14摄氏度、需求电流为132安。

充电3分钟,汉EV四驱版充电电流为130安、充电电压470.8伏。随即充电约50分钟,汉EV四驱版充电电压保持在510伏左右、充电电流在110-130安波动,但是充电功率维持在52-55千瓦,刀片电池热管理控制系统适中运行为电芯进行低温预热。

在汉EV四驱版进行热车状态直流快充测试时,同一充电场站1台雷克萨斯UX电动汽车进行充电(同样为热车状态充电)。刚刚上市的雷克萨斯UX300e电动汽车售价36-38万元,NEDC续航里程400公里,搭载1台装载电量54.35度电、***用空调直冷散热和电加热的三元锂电池总成。

从充电桩端显示,这台续航400公里级的雷克萨斯UX300e电动汽车充电时长约为23分、电芯最高温度2摄氏度、需求电流36安、额定电压355伏;在另一显示子菜单中,23分钟内充入8.4度电、充电电流为38.3安、充电电压350.7伏。

2、汉EV搭载的电四驱系统在冰雪路面的控制策略:

截止2020年12月,在中国市场量产的具备四轮驱动的电动汽车,极少数***用以性能取胜的类似于三菱帕杰罗越野车的“全时四驱”模式,多数为以续航取胜的类似于传统都市型SUV的“适时四驱”。

根据新能源情报分析网在7月份,对汉EV四驱版进行的台架电四驱控制策略评测结果看,ECO模式类似于“适时四驱”;SPORT模式类似于“全时四驱”。

台架测试状态,上图为汉EV四驱版处于SPORT模式“全油门”加速,前置163千瓦“3合1”电驱动总成(红色箭头所指),后置200千瓦“3合1”电驱动总成(蓝色箭头所指)同时输出扭矩。

台架测试状态,上图为汉EV四驱版处于ECO模式“半油门”加速,前置163千瓦“3合1”电驱动总成(红色箭头所指)率先输出扭矩,后置200千瓦“3合1”电驱动总成(蓝色箭头所指)则没有进行做功。

在雪后的承德市郊,部分雪化成冰,路面类似于“冰穿甲+积雪”,同时间隔一段一段的铺装路面,这也是北方地区冰雪之后常见的复杂路况。在这种雪+冰构成的湿滑路面,汉EV四驱版分别在SPORT\ECO模式,以“全油门”和“半油门”状态进行加速的测试。

上图为汉EV四驱版在SPORT模式进行“全油门”加速测试,起步瞬间的特写。在加速的瞬间,前后驱动桥同时爆发扭矩,尽管后置电驱动总成较前电驱动电总成更有“力量”,可是车身姿态并未因“前轻后重”的设定而摆动。随着前后驱动桥扭矩的释放“过度”,控制系统逐步调节轴间扭矩,车辆顺利加速行驶

通过慢动作***可见,在SPORT模式下,前驱动轮(红色箭头所指)与后驱动轮(蓝色箭头所指)转速几乎完全一致;在ECO模式下,前驱动轮顺势输出动力,后驱动轮处于随动状态。

在SNOW模式下以“全油门”状态深踩加速踏板,车载控制系统会主动弱化扭矩的输出,同时,前后电驱动总成仍然以“全时四驱”模式做功。相对SPORT模式,SNOW模式在弱化动力输出的同时,ESP系统频繁的介入增加了一层轴间轮速差避免了侧滑

在SNOW模式下以“半油门”状态十分轻柔的控制加速踏板,车辆会根据桥间和轴间轮速差进行综合判断和决策,是***用两驱还是四驱模式。在SNOW模式下稍微深踩加速踏板,车辆还是会以四驱模式起步和加速。

在台架上对比亚迪汉EV四驱版进行电四驱控制策略测试,确实可以做到直观的反映前后电机运行的状态。但是在低温环境的冰雪路面的实际表现,不仅能看出汉EV四驱版“前轻后重”的扭矩分配效率,更能看出比亚迪汽车工程院对整车行驶安全的严格把控。

笔者有话说:

在未来两年内,全球范围都难以为锂电池电动汽车找到解决寒冷气候充放电效率不足问题的有效手段。除非***用活性与安全性突破现有平衡的固态电池技术,且进行大规模量产,否则都不能彻底解决问题。

***用三元锂电池系统、350伏电压平台的荣威ei5凉车充电效率,弱于***用磷酸铁锂电池系统、560伏电压平台的比亚迪汉EV;售价36万元起、搭载的三元锂电池、选用350伏电压平台的雷克萨斯UX300e,尽管配置了空调制冷散热系统,但是其低温预热系统没有***用冷却液+PTC控制模组技术,导致热车充电效率依旧十分低下。

通过以上进行一系列单车纵向充电测试和多车横向充电功率对比可见,***用560伏高电压刀片电池系统的汉EV,无论凉车状态还是热车状态的充电效率,都要比大多数***用350-400伏电压平台的三元锂电池系统电动汽车优秀很多。

对于搭载第3种技术状态电四驱系统的汉EV而言,真正的技术优势是在冬季冰雪路面的主动行车安全性,以及在夏季高温环境频繁大功率充放电时,560伏刀片电池更小电流和更少发热量带来的电力系统安全性。

要知道汉EV从立项到量产大约用了8年时间,集成的第3种技术状态电四驱技术以及复杂的控制策略耗费的时间,甚至大过一些造车新势力成立到第1款车量产的全部周期。

新能源情报分析网评测组出品

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

比亚迪汉dmi直流充电功率低

2020年7月12日,比亚迪汉EV和汉DM两款新能源车上市。汉EV汉EV超长续航版豪华补贴后售价22.98万元、汉EV超长续航版尊贵型补贴后售价25.58万元、汉EV四驱高性能版旗舰型补贴后售价27.95万元;汉DM四驱性能版豪华型售价21.98万元。

新能源情报分析网随后在对汉EV两(前)驱版和四驱版分别进行动态测试,对汉EV两(前)驱版的测试围绕DiDas***系统激活和应用;对汉四驱版的测试围绕第3代电四驱系统控制策略进行,并体验“e+平台”体系下的“2合1”双向充配电总成驱动标配“100千瓦”级快充技术。

1、汉EV两(前)驱版DiDas***系统实际应用感受:

测试的汉EV两(前)驱版适配1组最大输出功率163千瓦、最高转速15500转/分“3合1”电驱动系统总成,集成的IPB电液一体化制动系统,构成了全车DiDas驾驶***系统的基础技术支持之一。这套将制动总泵、ABS阀体和管路一体化集成的IPB制动系统,由比亚迪和博世联合开发。而汉EV全系车型的全部电驱动系统、动力电池系统以及整车层面的控制系统,全部由比亚迪自行研发和量产,从根本上为控制权限更高的IPB制动系统的“无缝连接”集成提供了最大便利性。

汉EV搭载的DiPilot智能驾驶***系统,囊括了比亚迪最新的DiDAS驾驶***技术。其中,ACC-S&G停走型全速自适应巡航系统、CSC弯道速度控制系统、FCW前向碰撞预警系统、AEB-CCR自动紧急制动系统、AEB-VRU行人识别/保护系统、EBA紧急制动***系统、ESS紧急制动提醒系统、LDWS车道偏离预警系统、LKS主动式车道保持系统、HMA智能远近光灯系统、TSR交通标志智能识别系统为汉EV两(前)驱版和汉EV四驱版多款车型全系标配。

汉EV两(前)驱版可以直接通过方向盘左侧按键DiPilot智能驾驶***系统,红色箭头为自适应巡航功能开启按键,绿色箭头调节跟车车距,**箭头为360全景影像开启按键,蓝色箭头为中控多媒体旋转按键,而车道保持按键在换挡挡杆旁边可以开启。

当汉EV两(前)驱版激活DiPilot智能驾驶***系统后,驾驶员用液晶仪表显示会呈绿色状态。红色箭头为自适应巡航系统设定的最高车速,**箭头为车道保持功能开启,未开启车道保持时中间车辆显示旁边车道线为**。

汉EV两(前)驱版在开启DiPilot智能驾驶***系统后,整车行驶轨迹保持的相当线性,可以处于车道中间行驶,没有大幅度的左右来回摆动的情况。当有其他车辆并入我方车道时,汉EV两(前)驱版首先进行减速制动,然后进行跟车动作,并没有突然情况的急刹车出现。特别值得一提的是DiPilot智能驾驶***系统还包含DiTrainer教练模式,它可根据驾驶行为、路况、天气甚至驾龄等因素评测,选择性开启***驾驶功能。

驾驶员通过多功能方向盘左侧开关组件,即刻激活L2级***驾驶功能,比亚迪汉EV两(前)驱版的自适应巡航分为两种巡航模式。当前方有车时,汉EV两(前)驱版能够做到0-150公里/小时的全速域跟车自适应巡航,并且前方车辆短时间停止启动后也能够紧紧跟随。而当前方没有检测到车辆时,汉EV两(前)驱的自适应巡航功能当时速低于30公里/小时会取消,让驾驶员及时监控车辆的行驶轨迹,保证车辆行驶安全。

需要说明的是,汉EV两(前)驱版在激活DiDas系统时,首先要保证行驶在分道线清晰的路面。如果在行驶过程中分道线出现了断续,系统将自动进入“自我保护”状态,虽然没有关闭,但是整车的控制权立刻交还给驾驶员。

汉EV两(前)驱版为前置动力、前轮驱动,在中控显示屏的能量流选项中,可以获悉动力电池与驱动电机之间“电量”转换的状态。在同一个选项页面中,可以对汉EV两(前)驱版的能量回收标准进行调节并获得实时反馈。

在IPB电液一体化制动系统的介入下,制动分泵的制动盘和制动片完全脱离处于“零接触”状态,降低行车电耗的损失。在“怠速”行车状态,IPB电液一体化制动系统可回馈的最高减速度为0.37g(车速降至2公里/小时仍然处于能量回收状态)。在实际驾驶过程中,车速超过60公里/小时之后,电量回收功率可以达到45-50千瓦。而行车车速突破90公里/小时,电量回收功率甚至可以突破55千瓦。

2、汉EV四驱版适配第3代电四驱技术控制策略:

汉EV四驱版与两汉EV(前)驱,无论车身尺寸、智能驾驶控制系统、动力电池装载电量以及热管理策略都完全一致。唯一区别是后置的1组由集成碳化硅控制技术、最大输出功率200千瓦、最高转速15500转/分的“3合1”电驱动总成。

上图为比亚迪官方发布的对汉EV四驱版搭载的前置最大输出163千瓦、15500转/分“3合1”电驱动总成;后置最大输出200千瓦、15500转/分、碳化硅芯片控制“3合1”电驱动总成介绍信息。

2013年,比亚迪开始量产e6系列电动汽车,适配90千瓦级、11000前传/分“2合1”驱动电机总成;

2015年,比亚迪开始量产秦EV(e5)系列,适配160千瓦级、12000转分“2合1”驱动电机总成;

2016年,比亚迪开始量产宋EV系列,适配160千瓦级、12000转/分“2合1”驱动电机总成;

2018年,比亚迪开始量产唐EV,适配180千瓦级、15000转/分“3合1”电驱动总成;

2020年,比亚迪喀什量产汉EV,适配163千瓦、200千瓦、15500转/分“3合1”电驱动总成;

从功率上看,比亚迪乘用车载电机覆盖了90千瓦至200千瓦级;从转速看,覆盖了11000转/分、12000转/分、15000转/分和15500转/分;从集成度看,由单独设定电机控制系统+“2合1”驱动电机和减速器总成,提升至集成电机控制系统的“3合1”电驱动总成。从电机控制系统技术含量看,由最早的外购IGBT芯片,至自行研发和量产的碳化硅芯片及解决方案。

唐EV全系车型适配的180千瓦15000转/分“3合1”电驱动总成,进化为汉EV两(前)驱版163千瓦15500转/分“3合1”电驱动总成;汉EV系列前置163千瓦15500转/分“3合1”电驱动总成,换装碳化硅功率控制芯片,功率提升至200千瓦而来的15500转/分“3合1”电驱动总成,凸显比亚迪在电驱动技术遵循的迭代发展策略。

显然,作为比亚迪EV车型中最高技术含量的汉EV四驱版,适配了2种控制技术,统一转速、“前轻后强”功率设定的电驱动系统,也为比亚迪第3代电四驱系统控制策略带来了巨大变化!

在ECO模式和SPORT模式,驾驶员也液晶仪表可以显示,汉EV四驱版电四驱系统能量流输出/回收实时状态(红***域)。在后续的测试中,ECO模式电机输出功率被系统限定,不会在加速时就释放最大扭矩。在SPORT模式,明显感受到来自后驱动桥输出扭矩爆发,使得车辆有轻微的“抬头”。在铺装路面进入冰雪模式,扭矩输出再次被系统强制限定,即便深踩“油门”踏板,车速的提升都较ECO模式来的更缓慢。

汉EV四驱版在SPORT模式下,最大输出功率200千瓦的后驱动电机以“BOOST”状态运行,最大输出功率163千瓦的前驱动电机在前驱动桥转向功能的介入下进行扭矩调节,保持加速过程中前后驱动桥输出的动力都处于可控状态。无论加速和制动,汉EV四驱版配置的IPB电液一体化系统的配置,都在对通过桥间扭矩的多次分配,进行车身姿态的稳定。

这组集成碳化硅芯片技术的“3合1”电驱动总成,使得汉EV四驱版在长时间高负载工况运行下,电控系统过流能力可以提升58%,对于稳定功率降低温度的作用十分显著。

在湿滑的铺装路面+弯道加速工况进行多次测试后发现,汉EV四驱版的前后驱动电机,都处于持续运行中。相对此前***用第2代电四驱技术的唐EV四驱版偏向节能设定的控制策略,汉EV四驱版搭载的第3代电四驱技术更倾向于“全时四驱”控制策略,即整车在多种工况下都处于四轮驱动状态。

上图为汉EV四驱版动力舱内动力电池热管理系统补液壶热成像温度表现状态。在对第3代电四驱系统频繁测试后,汉EV四驱版刀片电池循环管路补液壶温度处于27.5摄氏度,甚至低于电驱动系统散热管路补液壶的温度。

3、汉EV四驱版100千瓦升压快充解读:

在此前撰写的汉EV两(前)驱版搭载的诸多新技术预判稿件中曾提及,汉EV两(前)驱和四驱版***用较比亚迪现有“e平台”EV车型技术解决方案更高级的“e+平台”。而“e+平台”最新技术提升之处就是才用了“2合1”双向充配电总成,仅集成了DCDC和OBC,去掉的PDU功能责备DCDC取代。这套“2合1”双向充配电总成,在体积、结构和自重层面,都较唐EV适配的‘3合1’高压用电系统总成进行大幅进化。

“2合1”双向充配电总成的引入,在高电压平台刀片电池与全新热管理技术(策略)的配合下,使得汉EV两(前)驱版和四驱版,在快充模式下功率可以达到100千瓦。

备注:比亚迪官方并未对汉汉EV车型适用的新平台技术给出正式命名

在售的唐EV、秦Pro?EV、宋Pro?EV、元EV以及e1等基于“e平台”体系下电动汽车,根据“3合1”高压用电系统配置不同拥有3种不同充\配电功率设定。其中,唐EV适配的“3合1”高压用电系统总成为最高技术状态,具备车载端升压80千瓦充电功率能力。

相对唐EV的80千瓦快充功率,汉EV的快充功率可以达到100千瓦,且依旧***用基于高电压平台的升压技术。

上图为汉EV四驱版快充至SOC值50%,充电功率为100.5千瓦,充至满电还需35分钟。来自比亚迪官方宣称,汉EV全新车型都具备长时间升压快充安全保障,25分钟即可从25%充电至80%。

由于特来电制造的快充桩和慢充桩,都要在APP配合下进行使用。在APP端可以显示动力电池起始充电时的SOC值、功率和电芯温度等关键数据。汉EV四驱版的动力电池SOC值为50%(蓝色箭头所指),APP端显示功率为105.6千瓦(绿色箭头所指)、刀片电池电芯温度最高点位35摄氏度(白色箭头所指)。

通过充电APP数据截图分析,这台汉EV四驱版搭载的刀片电池剩余电量约为15%时。充至SOC值17%时,充电功率窜升至123千瓦最高点;随即在SOC值22%时充电功率“回落”至105.6千瓦并稳定至SOC值50%。在充电功率处于105.6千瓦过程中(SOC值22%-50%),电芯温度从起始的21摄氏度平缓升至35摄氏度。

笔者有话说:

此次试驾的汉EV两(前)驱版的DiDas驾驶***系统,在分道线清晰的铺装路面可以通过位于换挡面板和多功能方向盘物理按键进行“1键激活”。而丰富的驾驶***功能、提升行车舒适性的***功能,需要在中央显示屏进入2级菜单“虚拟操控”。***用新状态的“三防”双层安全玻璃,有助于平衡车内外温度和湿度差,使得前置摄像头被雾气侵扰的几率降至最低。

后置最大输出功率200千瓦、碳化硅控制技术、15500转/分“3合1”电驱动总成以模块化方式集成,与前置163千瓦、15500转/分“3合1”电驱动总成,构成了汉EV四驱版第3代电四驱系统,更贴近“全时四驱”控制策略。

“e+平台”下的“2合1”双向充配电总成+高电压平台刀片电池系统+全新热管理技术(策略)的结合,最终体现的是汉EV具备的100千瓦级快充功率的优秀表现。

后续新能源情报分析网将对安全、性能、豪华标杆的汉EV搭载的诸多分系统的最新技术状态进行深度研判,尽请关注。

新能源情报分析网评测组出品

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

电池质量下降。比亚迪汉dmi直流充电功率低的原因是因为电池质量下降,比亚迪汉DM-i是比亚迪旗下汉系列插电混动汽车,售价区间为21.58万-32.98万元。比亚迪汉DM-i是比亚迪旗下汉系列纯电动与混合动力车型。

标签: #比亚

上一篇比亚迪汉ev深度测评_比亚迪汉EV的详情

下一篇当前文章已是最新一篇了